Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading

نویسندگان

  • S. Petry
  • K. Beyer
چکیده

Recent research showed that the in-plane horizontal displacement capacity of unreinforced masonry (URM) walls depends on numerous factors that are not yet captured by current empirical drift capacity models; e.g., axial stress, shear span, geometry of the walls and the material used. In order to improve the performance-based assessment of URM wall buildings, future research should aim at developing numerical and mechanical models that link the global force-displacement response of URM walls to local deformation measures such as strains. This paper addresses the behaviour of modern clay brick masonry and makes first contributions to such an endeavour by the evaluation of experimental results: first, two sets of limit states are proposed that link local damage limit states to characteristic points of the global force-displacement response of the URM wall. The two sets define limit states for walls developing a shear or a flexural mechanism respectively. Second, local deformation measures deemed suitable for the characterisation of these limit states are evaluated from optical measurement data of quasi-static cyclic wall tests. These include strains, compression zone depth and the ratio of shear to flexural deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective stiffness of unreinforced brick masonry walls

Code design of Unreinforced Masonry (URM) buildings is based on elastic analysis, which requires as input parameter the effective stiffness of URM walls. Current approaches estimate the effective stiffness as fixed ratio of the gross sectional stiffness but comparisons with experimental results have shown that this does not yield satisfactory predictions. In this paper, a recently developed ana...

متن کامل

Simulation of Masonry Beams Retrofitted with Engineered Cementitious Composites

A thin layer of ductile fiber-reinforced mortar material referred to as Engineered Cementitious Composites, or ECC has been experimentally investigated as a seismic retrofit for unreinforced masonry infill walls in non-ductile reinforced concrete frames. Compression tests of masonry prisms retrofitted with 13mm of ECC were conducted representing the compression strut of a masonry infill under i...

متن کامل

Modelling of the Cyclic Response of an Unreinforced Masonry Wall through a Force Based Beam Element

The seismic assessment of existing masonry buildings is based on the prediction of their nonlinear response under lateral loading. This requires a reliable estimation of the force and displacement demand. For this purpose, modelling strategies using structural component elements are widely applied both in research and in engineering practice, since they can provide a satisfactory description of...

متن کامل

Scaling unreinforced masonry for reduced-scale seismic testing

When testing multi-storey structures, most testing facilities require the testing of a reduced-scale model. A literature review on tests of scaled masonry structural components revealed that scaling of masonry was rather challenging and often significant differences in stiffness, strength and failure mechanisms between the different sized masonry were reported. This paper addresses the scaling ...

متن کامل

Force Reduction Factor R for Shear Dominated Low-Rise Brick Masonry Structures

This paper presents investigation carried out, including experimental and numerical studies, on low-rise shear-dominated brick masonry structures for the calculation of force reduction factor R. Basic experimental tests were conducted on masonry constituent materials for mechancial characterization. In-plane quasi-static cyclic tests were conducted on twelve full scale brick masonry walls, to u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014